What are hormones?
Hormones are substances that function as chemical messengers in the body. They affect the actions of cells and tissues at various locations in the body, often reaching their targets through the bloodstream.
The hormones estrogen and progesterone are produced by the ovaries in premenopausal women and by some other tissues, including fat and skin, in both premenopausal and postmenopausal women. Estrogen promotes the development and maintenance of female sex characteristics and the growth of long bones. Progesterone plays a role in the menstrual cycle and pregnancy.
Estrogen and progesterone can also promote the growth of some breast cancers, which are called hormone-sensitive (or hormone-dependent) breast cancers.
How do hormones stimulate the growth of breast cancer?
Hormone-sensitive breast cancer cells contain proteins known as hormone receptors that become activated when hormones bind to them. The activated receptors cause changes in the expression of specific genes, which can lead to the stimulation of cell growth.
To determine whether breast cancer cells contain hormone receptors, doctors test samples of tumor tissue that have been removed by surgery. If the tumor cells contain estrogen receptors, the cancer is called estrogen receptor-positive (ER-positive), estrogen-sensitive, or estrogen-responsive. Similarly, if the tumor cells contain progesterone receptors, the cancer is called progesterone receptor-positive (PR- or PgR-positive). Approximately 70 percent of breast cancers are ER-positive. Most ER-positive breast cancers are also PR-positive (1).
Breast cancers that lack estrogen receptors are called estrogen receptor-negative (ER-negative). These tumors are estrogen-insensitive, meaning that they do not use estrogen to grow. Breast tumors that lack progesterone receptors are called progesterone receptor-negative (PR- or PgR-negative).
What is hormone therapy?
Hormone therapy (also called hormonal therapy, hormone treatment, or endocrine therapy) slows or stops the growth of hormone-sensitive tumors by blocking the body’s ability to produce hormones or by interfering with hormone action. Tumors that are hormone-insensitive do not respond to hormone therapy.
Hormone therapy for breast cancer is not the same as menopausal hormone therapy or female hormone replacement therapy, in which hormones are given to reduce the symptoms of menopause.
What types of hormone therapy are used for breast cancer?
Several strategies have been developed to treat hormone-sensitive breast cancer, including the following:
Blocking ovarian function: Because the ovaries are the main source of estrogen in premenopausal women, estrogen levels in these women can be reduced by eliminating or suppressing ovarian function. Blocking ovarian function is called ovarian ablation.
Ovarian ablation can be done surgically in an operation to remove the ovaries (called oophorectomy) or by treatment with radiation. This type of ovarian ablation is usually permanent.
Alternatively, ovarian function can be suppressed temporarily by treatment with drugs called gonadotropin-releasing hormone (GnRH) agonists, which are also known as luteinizing hormone-releasing hormone (LH-RH) agonists. These medicines interfere with signals from the pituitary gland that stimulate the ovaries to produce estrogen.
Examples of ovarian suppression drugs that have been approved by the U.S. Food and Drug Administration (FDA) are goserelin (Zoladex®) and leuprolide (Lupron®).
Blocking estrogen production: Drugs called aromatase inhibitors can be used to block the activity of an enzyme called aromatase, which the body uses to make estrogen in the ovaries and in other tissues. Aromatase inhibitors are used primarily in postmenopausal women because the ovaries in premenopausal women produce too much aromatase for the inhibitors to block effectively. However, these drugs can be used in premenopausal women if they are given together with a drug that suppresses ovarian function.
Examples of aromatase inhibitors approved by the FDA are anastrozole (Arimidex®) and letrozole (Femara®), both of which temporarily inactivate aromatase, and exemestane (Aromasin®), which permanently inactivates the enzyme.